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1 Introduction

Upper semicontinuity, quasisupermodularity, and Milgrom and Shannonís (1994)
single crossing are su¢cient for a normal-form game where the strategy sets are
compact lattices in Euclidean spaces to have a pure strategy Nash equilibrium.2

In many economics-related games, the strategy sets are totally ordered. In such
cases, both upper semicontinuity and single crossing are excessively demanding.
The focus of this paper is on relaxing both of the two conditions.
In games with strategic complementarities, the best-reply correspondences are,

usually, assumed to be nonempty-valued and subcomplete-sublattice-valued. These
propitious properties of the best-reply correspondences are achieved by making a
not entirely innocuous assumption, namely that each payo§ function is upper semi-
continuous in own strategy, which noticeably narrows the class of games in which
equilibrium existence can be studied with the aid of lattice-theoretic tools. In this
paper, upper semicontinuity is replaced with one of the following pairs of con-
ditions: either with Tian and Zhouís (1995) transfer weak upper continuity and
directional upper semicontinuity or with Renyís (1999) better-reply security and
directional upper semicontinuity, thereby making it possible to cover new classes of
games to which the seminal contributions by Vives (1990), Milgrom and Shannon
(1994), and Reny (1999) cannot be applied.
For games where the payo§ functions are transfer weakly upper continuous in

own strategies, single crossing is generalized to directional transfer single crossing.
The word ídirectionalí means that single crossing is divided into upward single
crossing and downward single crossing, and the word ítransferí reáects the fact
that, in this paper, the notion of an increasing correspondences is understood
in Smithsonís (1971) and Fujimotoís (1984) sense. We illustrate the interplay of
the di§erent notions with the aid of a partnership game (Example 4) and a war
of attrition game (Example 5). In the latter, player 1ís payo§ function satisÖes
upward single crossing and player 2ís payo§ function satisÖes downward single
crossing when the natural order relation on player 2ís strategy set is reversed.
The lattice-theoretic approach covers a large number of oligopoly models (see,

e.g., Roberts and Sonnenschein, 1976; Vives, 1990; Amir, 1996; Vives, 1999; and
Amir and De Castro, 2015). However, the classic Bertrand oligopoly model with
homogeneous products is not one of them since its payo§ functions are too dis-
continuous. At the same time, in the two-Örm case, for example, if, initially, the
proÖt-maximizing Örms charge prices exceeding the unit cost of production, then
any of them has no incentive to lower its price in reaction to an increase in the price
charged by its rival. On the other hand, if the demand curve has a conventional
convex shape, the quasiconcavity of the Bertrand duopoly game tends to fail, and,

2See, for general reviews, Vives (1999), Amir (2005), and Vives (2005).

2



consequently, it might be impossible to apply Renyís (1999) equilibrium existence
theorem and any of its generalizations.3

We handle the equilibrium existence problem in games where the best-reply
correspondences are not necessarily nonempty-valued everywhere in two steps.
The Örst step employs lattice-theoretic tools and directional upper semicontinuity
to investigate the existence of "-equilibria, and the second step relies on the fact
that, in the better-reply secure games, the cluster points of a sequence of "-Nash
equilibria are Nash equilibria. In order to express strategic complementarities
in terms of "-best-reply correspondences, two more directional modiÖcations of
single crossing are introduced. The proposed equilibrium existence conditions
are illustrated on a nonquasiconcave Bertrand duopoly model with homogeneous
products (Example 6).
The structure of the paper is as follows. Section 2 contains some theoretical

underpinnings necessary for studying strategic complementarities in discontinu-
ous games. The main results of the paper are presented in Section 3, and the
illustrating examples are provided in Section 4.

2 Preliminaries

This section provides some lattice-theoretic and topological deÖnitions and auxil-
iary results.

2.1 Posets

Given a nonempty set P , a binary relation ! on P is a partial order if it is reáexive,
antisymmetric, and transitive. The pair (P; !) is a partially ordered set or poset,
though it is often said that P is a poset if there is no ambiguity regarding the order
relation involved. A poset P is totally ordered if every x; y 2 P are comparable,
that is, x ! y or y ! x. Denote the asymmetric part of the relation ! by #.
Let (P; !) be a poset. An element m 2 P is a maximal element (resp., a

minimal element) of P if for all p 2 P , m ! p (resp., p ! m) implies m = p. An
element m 2 P is the greatest element (resp., the least element) of P if p ! m
(resp., m ! p) for all p 2 P . Let S $ P . An upper (resp., lower) bound for S is an
element p 2 P such that s ! p (resp., p ! s) for all s 2 S. The least upper bound
(resp., the greatest lower bound) of S is also called the join (resp., the meet) of S
and is denoted by

_
S (resp.,

^
S). The set P is a lattice if every pair of elements

of P has a meet and a join. It is a complete lattice if P has arbitrary meets and
arbitrary joins. A nonempty subset S is a chain in P if S is totally ordered by !.

3See McLennan, Monteiro and Tourky (2011), Barelli and Meneghel (2013), Carmona and
Podczeck (2016), and Reny (2016).
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The interval topology on a totally ordered set P is the topology generated by
the closed subbase consisting of the sets [a;+1) = fp 2 P : a ! pg and ((1; a] =
fp 2 P : p ! ag where a 2 P .4 Every totally ordered set in its interval topology
is a normal Hausdor§ space. A chainís compactness in the interval topology is
equivalent to its completeness (see, e.g., Birkho§, 1967, p. 241-242).
By an ordered topological space we mean a nonempty set P equipped with a

partial order ! and a topology such that the intervals [a;+1) and ((1; a] are
closed for each a 2 P . It is useful to notice that every totally ordered compact
space is a complete chain, since the compactness of the topological space implies
its compactness in the interval topology.

2.2 Upper semicontinuity

This subsection gives some basic facts about upper semicontinuous functions.
First, we introduce two types of directional upper semicontinuity.

DeÖnition 1 Let P be a totally ordered compact space. A function f : P ! R is
upward (resp., downward) upper semicontinuous if for every increasing (resp., de-
creasing) net fp!g of elements of P , lim sup! f(p!) * f(

_

!

p!g) (resp., lim sup! f(p!) *

f(
^

!

p!)). A function f : P ! R is order upper semicontinuous if it is upward

and downward upper semicontinuous.

The deÖnition of a real-valued, order upper semicontinuous function deÖned on
a complete lattice can be found in Milgrom and Roberts (1990).
Each of the directional upper semicontinuity properties is weaker than upper

semicontinuity for functions deÖned on a totally ordered compact space.

Example 1 Consider the function f : [0; 1] ! [0; 1] deÖned by f(x) = 1
if x 2 [0; 1) and f(1) = 0: This function is lower semicontinuous and downward
upper semicontinuous under the natural order on [0; 1].

Now let us look at some generalizations of upper semicontinuity from a topo-
logical point of view. Let P be a topological space. A function f : P ! R is
upper semicontinuous at p if for any - 2 R such that f(p) < -, there exists
a neighborhood N (p) of p such that f(s) < - for all s 2 N (p). A function
f : P ! R is upper semicontinuous if it is upper semicontinuous at every p 2 P .
Another equivalent deÖnition of upper semicontinuity is the following: A function

4Another approach to introducing a topology on a complete lattice focuses on order conver-
gence. On any complete chain, the order topology coincides with the interval topology (see, e.g.,
Birkho§, 1967, p. 244).
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f : P ! R is upper semicontinuous at p 2 P if and only if p! ! p in P implies
that lim sup! f(p!) * f(p). This deÖnition is used to show the following lemma.

Lemma 1 Let P be a totally ordered compact space. A function f : P ! R is
upper semicontinuous if and only if it is order upper semicontinuous.

The proof of Lemma 1 is provided in the Appendix for the sake of the readerís
convenience.
The notion of an upper semicontinuous function was relaxed by Campbell and

Walker (1990) and Tian and Zhou (1995). Let P be a topological space. A function
f : P ! R is upper continuous if for any points p, s 2 P , f(p) < f(s) implies that
there exists a neighborhood N (p) of p such that f(r) < f(s) for all r 2 N (p). It is
another equivalent deÖnition of an upper semicontinuous function. Replacing the
latter inequality in the deÖnition of an upper continuous function with its weak
counterpart leads to a generalization of the notion of an upper semicontinuous
function. A function f : P ! R is weakly upper continuous if for any points
p, s 2 P , f(p) < f(s) implies that there exists a neighborhood N (p) of p such
that f(r) * f(s) for all r 2 N (p) (see Campbell and Walker, 1990). The set
of maximum points of a weakly upper continuous function on a compact set is
nonempty but not necessarily closed. An important generalization of the notion of
a weakly upper continuous function is that of a transfer weakly upper continuous
function, due to Tian and Zhou (1995). A function f : P ! R is transfer weakly
upper continuous if for any points p, s 2 P , f(p) < f(s) implies that there exist
u 2 P and a neighborhood N (p) of p such that f(r) * f(u) for all r 2 N (p). A
necessary and su¢cient condition for a function deÖned on a compact subset of
P to attain its maximum on the set is the transfer weak upper continuity of the
function (see Tian and Zhou, 1995, Theorem 1).

2.3 Increasing correspondences

Let P and T be posets. A function f : P ! T is increasing if p ! s in P im-
plies f(p) ! f(s) in T . Since, according to Tarskiís Öxed point theorem (Tarski,
1955), every increasing function from a complete lattice to itself has a Öxed point,
the problem of existence of a Öxed point for an increasing correspondence is of-
ten reduced to showing that it has a single-valued increasing selection. However,
depending on needs, several deÖnitions of an increasing correspondence can be
employed.

DeÖnition 2 Let P and T be posets. A nonempty-valued correspondence F :
P ! T is increasing upward (resp., downward) if p ! s in P and u 2 F (p) (resp.,
v 2 F (s)) imply that there exists v 2 F (s) (resp., u 2 F (p)) such that u ! v.

5



If a correspondence F : P ! T is increasing upward and downward, it is called
increasing.

Smithson (1971) and Fujimoto (1984) extended Tarskiís Öxed point theorem to
increasing correspondences (see, for more up-to-date results, Heikkila and Re§ett,
2006; Carl and Heikkila, 2011).
In economics literature, a stronger notion of an increasing correspondence is

more popular than the one given just above.

DeÖnition 3 A nonempty-valued correspondence F : P ! T is Veinott-increasing
upward (resp., downward) if p ! s in P , u 2 F (p) and v 2 F (s) imply that
u _ v 2 F (s) (resp., u ^ v 2 F (p)). If a correspondence F : P ! T is Veinott-
increasing upward and downward, it is called Veinott-increasing.

Another, more traditional name for a Veinott-increasing correspondence is a
correspondence increasing in the induced (strong) set order (see, e.g., Topkis, 1998,
p. 32). It is easy to see that: (1) the notion of an increasing correspondence is
considerably less demanding than the notion of a Veinott-increasing correspon-
dence; (2) an increasing correspondence need not have an increasing single-valued
selection.
Example 2 Consider the correspondence F : [0; 1]! [0; 1] deÖned by F (p) =

[1
3
p; 1

3
p + 1

3
]nfpg. The set [0; 1], equipped with the conventional order *, is a

complete chain. It is clear that F is an increasing correspondence with no Öxed
points. At the same time, F is not Veinott-increasing. For example, 5

12
2 F (1

4
),

1
4
2 F (1

2
), and 5

12
^ 1
4
= 1

4
=2 F (1

4
).

The next result is straightforward, but helpful.

Lemma 2 Let P and T be posets, and let F : P ! T be an increasing upward
(resp., downward) correspondence with nonempty values. If

_
F (p) 2 F (p) (resp.,

^
F (p) 2 F (p)) for every p 2 P , then F has an increasing selection.

Proof. In order to show the claim, it su¢ces to verify that the function f : P ! T

deÖned by f(p) =
_
F (p) (resp., f(p) =

^
F (p)) for p 2 P is increasing.

If, for example, the correspondence F is increasing upward and p1, p2 2 P such
that p1 ! p2, then there exists u 2 F (p2) such that f(p1) ! u. Since u ! f(p2),
we have that f(p1) ! f(p2).

2.4 Directional transfer single crossing

The single-crossing property generalizes the property of increasing di§erences and
has found numerous applications in economics (see, e.g., Edlin and Shannon, 1998;
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Athey, 2001; Reny and Zamir, 2004; Quah and Strulovici, 2009, 2012; and Reny,
2011). This section contains several generalizations of the single-crossing property.
Let P and T be posets and let f : P / T ! R. The function f has increasing

di§erences in (p; t) if for all p00 0 p0, f(p00; t) ( f(p0; t) is increasing in t. The
function f satisÖes the single-crossing property in (p; t) if for all p00 0 p0 and t00 0 t0,
f(p00; t0)(f(p0; t0) > 0 implies that f(p00; t00)(f(p0; t00) > 0 and f(p00; t0)(f(p0; t0) 1 0
implies that f(p00; t00) ( f(p0; t00) 1 0. The function f satisÖes the weak single-
crossing property in (p; t) if for all p00 0 p0 and t00 0 t0, f(p00; t0) ( f(p0; t0) > 0
implies that f(p00; t00)( f(p0; t00) 1 0.
The single-crossing property is usually used along with the quasisupermodu-

larity property. Let P be a lattice. A function f : P ! R is quasisupemodular
if for all p0 and p00 in P , f(p0 ^ p00) * f(p0) implies that f(p00) * f(p0 _ p00) and
f(p0 ^ p00) < f(p0) implies that f(p00) < f(p0 _ p00). Clearly, every real-valued
function deÖned on a totally ordered set is quasisupermodular.
The following lemma is a corollary of Theorem 4 of Milgrom and Shannon

(1994).

Lemma 3 Let P be a lattice, T be a poset, and let f : P / T ! R. Let the
correspondence M : T ! P deÖned by M(t) = fp 2 P : f(p; t) = supz2P f(z; t)g
be nonempty-valued. Then it is Veinott-increasing if f is quasisupermodular in p
and satisÖes the single-crossing property in (p; t).

Since, in discontinuous games, best-reply correspondences are often not Veinott-
increasing, we need to introduce directional transfer single crossing.

DeÖnition 4 Let P and T be posets and let f : P / T ! R. The function f
satisÖes the upward (resp., downward) transfer single-crossing property in (p; t) if
for all p0 # p00 (resp., p0 0 p00) and t0 # t00(resp., t0 0 t00), f(p00; t0) ( f(p0; t0) 1 0
implies that f(bp; t00)( f(p0; t00) 1 0 for some bp 2 P with bp 2 p00 (resp., bp ! p00).

If, in DeÖnition 4, bp = p00, then the word ítransferí can be omitted. Obviously,
every function f : P / T ! R satisfying the upward (resp., downward) single-
crossing property in (p; t) also satisÖes the upward (resp., downward) transfer
single-crossing property in (p; t).
The upward and downward single-crossing properties are the two sides of Mil-

grom and Shannonís (1994) single-crossing property (see also Milgrom, 2004, ch. 4).
For the Örst-price sealed-bid auctions with incomplete information, a similar re-
formulation of Atheyís (2001) single-crossing condition can be found in Reny and
Zamir (2004).

Lemma 4 Let P and T be posets and let f : P / T ! R. The function f
satisÖes the single-crossing property in (p; t) if and only if it satisÖes the upward
and downward single-crossing properties in (p; t).

7



Proof. Assume that f satisÖes the single-crossing property in (p; t). We only
need to show that it has the downward single-crossing property in (p; t). Let
p0 0 p00 in P , t0 0 t00 in T , and f(p00; t0)( f(p0; t0) 1 0. Assume, by contradiction,
that f(p00; t00) ( f(p0; t00) < 0. Then, by single crossing, f(p0; t0) ( f(p00; t0) > 0, a
contradiction.
Now assume that f has the upward and downward single-crossing properties in

(p; t). Let p00 0 p0 in P , t00 0 t0 in T , and f(p00; t0)( f(p0; t0) > 0. We need to show
that f(p00; t00)( f(p0; t00) > 0. Assume, by contradiction, that f(p0; t00)( f(p00; t00) 1
0. Then, by downward single crossing, f(p0; t0)( f(p00; t0) 1 0, a contradiction.
The next lemma explains why the directional transfer single-crossing properties

are useful in game-theoretic applications.

Lemma 5 Let P be a totally ordered set and T be a poset. Let f : P /T ! R sat-
isfy the upward (resp., downward) transfer single-crossing property in (p; t). If the
correspondence M : T ! P deÖned by M(t) = fp 2 P : f(p; t) = supz2P f(z; t)g
is nonempty-valued, then it is increasing upward (resp., downward).

Proof. Assume, for example, that f satisÖes the upward transfer single-crossing
property in (p; t). Pick some t0 and t00 in T with t00 0 t0. Pick some p0 2 M(t0).
We need to show that there exists p00 2 M(t00) such that p00 2 p0. By way of
contradiction, assume that it is not the case; that is, p00 # p0 for every p00 2
M(t00). Fix some p00 2 M(t00): Then, by the upward single-crossing property,
f(p0; t0) ( f(p00; t0) 1 0 implies that f(bp; t00) ( f(p00; t00) 1 0 for some bp 2 P with
bp 2 p0; that is, bp 2M(t00), a contradiction.
A statement, similar to Lemma 5, for Veinott-increasing upward (downward)

correspondences is the following.

Lemma 6 Let P be a totally ordered set and T be a poset. Let f : P / T !
R satisfy the upward (resp., downward) single-crossing property in (p; t). If the
correspondence M : T ! P deÖned by M(t) = fp 2 P : f(p; t) = supz2P f(z; t)g
is nonempty-valued, then it is Veinott-increasing upward (resp., downward).

It is useful to notice that upward single crossing in Lemma 6 can not be relaxed
to Shannonís (1995) weak single crossing.

Example 3 Let P = T = f0; 1g and f(p; t) = maxf1 ( p; 1 ( tg for all
(p; t) 2 P/T . Then the function satisÖes the weak single-crossing property in (p; t)
trivially because f(1; 0)( f(0; 0) = 0: However, M(0) = f1; 0g and M(1) = f0g.

In order to be able to handle games where the best-reply correspondences
are not necessarily nonempty-valued everywhere, we now introduce approximate
transfer single crossing.
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DeÖnition 5 Let P and T be posets, and let f : P / T ! R: The function f
satisÖes the upward (resp. downward) transfer "-single-crossing property in (p; t)
(" > 0) if for all p0 # p00 (resp., p0 0 p00) and t0 # t00 (resp., t0 0 t00), f(p00; t0) (
f(p0; t0) > " implies f(bp; t00)( f(p0; t00) > " for some bp 2 P with bp 2 p00 (resp., bp !
p00). The function f satisÖes the approximate upward (resp., downward) transfer
single-crossing property in (p; t) if it satisÖes the upward (resp., downward) transfer
"-single-crossing property in (p; t) for every " > 0.

In DeÖnition 5, the word ítransferí can be omitted if bp = p00. Another possible
name for the approximate upward (resp., downward) single-crossing property is
íupward (resp., downward) nondecreasing positive di§erences,í since it can also be
represented as follows: for all p0 # p00 (resp., p0 0 p00) and t0 # t00 (resp., t0 0 t00),
f(p00; t0)( f(p0; t0) > 0 implies f(p00; t00)( f(p0; t00) 1 f(p00; t0)( f(p0; t0).
Approximate single-crossing allows us to study strategic complementarities ex-

pressed in terms of "-best-reply correspondences.

Lemma 7 Let P be a totally ordered set and T be a poset. If f : P / T ! R
satisÖes the upward (resp., downward) transfer "-single-crossing property in (p; t)
for some " > 0, then the correspondence M " : T ! P deÖned by M "(t) = fp 2 P :
f(p; t) 1 supz2P f(z; t)( "g is increasing downward (resp., upward).

Proof. Let " > 0, and let f satisfy the upward "-single-crossing property in (p; t).
Pick some t0 and t00 with t0 # t00. Pick some p00 2 M "(t00). We need to show
that there exists p0 2 M "(t0) such that p0 ! p00. By way of contradiction, assume
that it is not the case; that is, p0 0 p00 for every p0 2 M "(t0). Then p00 =2 M "(t0);
that is, f(p00; t0) < supz2P f(z; t

0)( ". By the deÖnition of the least upper bound,
there exists z0 2 M "(t0) such that f(z0; t0) ( f(p00; t0) > ". Since z0 0 p00 and
f satisÖes the upward transfer "-single-crossing property in (p; t), we have that
f(bp; t00)( f(p00; t00) > " for some bp 2 P with bp 2 z0, which contradicts the fact that
p00 2M "(t00).
Since increasing upward or downward correspondences need not have an in-

creasing single-valued selection, one more condition is to be added.

Lemma 8 Let P be a totally ordered compact space, T be a poset, and " 1 0.
Let f : P / T ! R, and let M " : T ! P deÖned by M "(t) = fp 2 P :
f(p; t) 1 supz2P f(z; t) ( "g be nonempty-valued. If f(3; t) : P ! R is upward
(resp., downward) upper semicontinuous for every t 2 T , then

_
M "(t) 2 M "(t)

(resp.,
^
M "(t) 2M "(t)) for every t 2 T .

It is worth noticing that, in Lemma 8, the condition that the correspondence
M " is nonempty-valued matters only when " = 0. The proof of Lemma 8 is
provided in the Appendix.
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2.5 Better-reply security

Although, the notion of a better-reply secure game, due to Reny (1999), has been
generalized in a number of ways recently, we do not need any of the generalizations
for the purposes of this paper. We are interested in the property because, in the
compact games, it implies that if an "-Nash equilibrium exists for every " > 0,
then the game has a Nash equilibrium. However, it has turned out that studying
the existence of "-equilibria in better-reply secure games is quite challenging on its
own. For compact, quasiconcave, payo§ secure games, a solution in this direction
was proposed by Prokopovych (2011).
We now provide some basic facts related to better-reply security, tailored for

this paperís needs.
Consider a compact game G = (Xi; ui)i2I , where I = f1; : : : ; ng denotes the

set of players, each strategy set Xi is a nonempty compact topological space, and
each payo§ function ui is a bounded real-valued function deÖned on the Cartesian
product X =

Y

i2I

Xi equipped with the product topology. Denote the set of all

pure strategy equilibria of G in X by EG, and X#i =
Y

j2Infig

Xj. Let " > 0. Player

iís "-best-reply correspondenceM "
i : X#i ! Xi is deÖned byM "

i (x#i) = fxi 2 Xi :
ui(xi; x#i) 1 supzi2Xi ui(zi; x#i)( "g. A strategy proÖle x = (x1; : : : xn) 2 X is an
"-Nash equilibrium of G if xi 2 M "

i (x#i) for each i 2 I. Denote the set of "-Nash
equilibria of G by EG(").
Better-reply security can be described as follows: A game G = (Xi; ui)i2I is

better-reply secure if and only if whenever x 2 XnEG, there exist " > 0, d =
(d1; : : : ; dn) 2 X, and an open neighborhood N (x) of x in X such that for every
y 2 N (x) there is a player i for whom ui(di; x

0
#i) > ui(y) + " for every x

0 2 N (x)
(see Prokopovych, 2013; and Reny, 2015).

Lemma 9 Let G = (Xi; ui)i2I be a better-reply secure, compact game. Let f"kg
be a sequence of positive numbers converging to 0, and let xk 2 EG("k) for k =
1; 2; : : : : Then every cluster point of the sequence fxkg is a Nash equilibrium of G.

Lemma 9, mentioned in Remark 3.1 of Reny (1999), readily follows from the
above characterization of better-reply security.

3 Equilibrium existence results

This section begins with Theorem 1, an equilibrium existence result for games
where each payo§ function is transfer weakly upper continuous in own strategy.

10



Then, Theorem 2 provides a set of su¢cient conditions for the existence of an
equilibrium in better-reply secure games.
Let I = f1; : : : ; ng. If, for each i 2 I, Xi is a partially ordered set with the

binary relation !i, then X =
Y

i2I

Xi and X#i =
Y

j2Infig

Xj are posets with the

corresponding product relations; that is, for example, x ! y in X if xi !i yi for
each i 2 I.

DeÖnition 6 A game G = (Xi; ui)i2I exhibits strategic complementarities if for
each i 2 I: (1) Xi is a nonempty totally ordered compact space; (2) ui is transfer
weakly upper continuous in xi and upward or downward upper semicontinuous
in xi; (3) ui satisÖes the upward (or, resp., downward) transfer single-crossing
property in (xi;x#i).

That is, in the games exhibiting strategic complementarities, along with being
transfer weakly upper continuous in own strategy xi, each payo§ function ui is
either upward upper semicontinuous in xi and satisÖes the upward transfer single-
crossing property in (xi;x#i), or is downward upper semicontinuous in xi and
satisÖes the downward transfer single-crossing property in (xi;x#i).

Theorem 1 Every game G = (Xi; ui)i2I with strategic complementarities has a
pure strategy Nash equilibrium.

Proof. For each i 2 I, the transfer weak upper continuity of each ui in xi implies
that player iís best-reply correspondence Mi : X#i ! Xi deÖned by Mi(x#i) =
fxi 2 Xi : ui(xi; x#i) = supzi2Xi ui(zi; x#i)g is nonempty-valued. Lemma 5 implies
that each Mi is increasing upward or downward. Since each payo§ function ui
is upward (or, resp., downward) upper semicontinuous in own strategy, it follows
from Lemma 8 that, for every x#i 2 X#i, Mi(x#i) contains

_
Mi(x#i) (or, resp.,^

Mi(x#i)). Then, by Lemma 2, each Mi has an increasing selection mi. DeÖne
an increasing function m from X to X by m(x) = (m1(x#1); : : : ;mn(x#n)) for
x 2 X. The set X, as the direct product of complete chains, is a complete lattice.
Then, by Tarskiís Öxed point theorem, the function m has a Öxed point. This
strategy proÖle is a Nash equilibrium of G.
If the payo§ functions of a game are not transfer upper weakly continuous in

own strategies, one may attempt to use modiÖcations of the single-crossing prop-
erty designed for studying monotonicity properties of "-best-reply correspondences,
such as the above-introduced approximate upward and downward single-crossing
properties.
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DeÖnition 7 A game G = (Xi; ui)i2I exhibits approximate strategic complemen-
tarities if for each i 2 I: (1) Xi is a nonempty totally ordered compact space;
(2) ui is bounded and upward or downward upper semicontinuous; (3) ui satisÖes
the approximate upward (or, resp., downward) transfer single-crossing property in
(xi;x#i); and, in addition, (4) G is better-reply secure.

In particular, (1) and (2) imply that G is a compact game.

Theorem 2 Every game G = (Xi; ui)i2I with approximate strategic complemen-
tarities has a pure strategy Nash equilibrium.

Proof. The proof of the theorem consists of two steps. First, we show, using
lattice-theoretic tools, that G has "-Nash equilibria for every " > 0, and then
make use of Lemma 9, since the game is compact and better-reply secure.
Fix some " > 0. It follows from Lemma 7 that each player iís "-best-reply

correspondence M "
i from X#i to Xi is increasing downward or upward, depending

on whether ui satisÖes the upward transfer "-single-crossing property or the down-
ward transfer "-single-crossing property. Since ui is either upward or, respectively,
downward upper semicontinuous, Lemmas 2 and 8 imply that each M "

i has an
increasing selection m"

i from X#i to Xi. Then the function m" : X ! X deÖned
by m"(x) = (m"

1(x#1); : : : ;m
"
n(x#n)) for x 2 X is increasing. By Tarskiís Öxed

point theorem, it has a Öxed point.
Therefore, G has an "-Nash equilibrium for every " > 0. By Lemma 9, G has

a pure strategy Nash equilibrium.

4 Applications

This section explains, with the aid of economics-related examples, the paperís
major contributions. The partnership game studied in Example 4 illustrates the
strengths of the generalized upper semicontinuity conditions used in Theorem 1.
In the game, the playersí payo§ functions are not upper semicontinuous in own
strategies, and, moreover, their best-reply correspondences are neither Veinott-
increasing upward nor Veinott-increasing downward.
In order to apply Theorem 1 to the war of attrition game studied in Exam-

ple 5, it is enough to reverse the natural order on player 2ís strategy set. Then,
player 1ís payo§ function satisÖes the upward single-crossing property in (x1;x2)
and player 2ís payo§ function satisÖes the downward single-crossing property in
(x2;x1). Consequently, player 1ís best-reply correspondence is Veinott-increasing
upward, and player 2ís is Veinott-increasing downward.
Example 6 is a Bertrand duopoly model with homogeneous products. Renyís

(1999) equilibrium existence theorem can not be applied to the game because it is

12



not quasiconcave. Vivesís (1990) and Milgrom and Shannonís (1994) results can
not be applied to it because the playersí payo§ functions are too discontinuous in
own strategies. The existence of a Nash equilibrium in Example 6 follows from
Theorem 2, where the two mentioned approaches are integrated.

Example 4 Each of two partners has no more than one unit of e§ort to con-
tribute to a project. If each partner i chooses the amount of e§ort ei; the total
output is f(e1; e2) = e1+ e2. Given a proÖle (e1; e2), partner i obtains the fraction
pi(ei; e#i) of the total output, where

pi(ei; e#i) =

8
<

:

1 if ei > e#i
1
2
if e1 = e2

0 if ei < e#i:

In this game, player iís payo§ function ui : [0; 1] / [0; 1] ! R is deÖned by
ui(ei; e#i) = pi(ei; e#i)(ei + e#i) ( ei. Player iís best-reply correspondence Mi :
[0; 1]! R is the following:

Mi(e#i) =

8
<

:

[0; 1] if e#i = 0
(e#i; 1] if e#i 2 (0; 1)
f0; 1g if e#i = 1:

Assuming that the playersí strategy sets are equipped with the natural order, let
us, for example, look, in some detail, at the properties of the correspondence Mi.
It is neither Veinott-increasing upward (1

2
2 Mi(0), 0 2 Mi(1), but 1

2
=2 Mi(1))

nor increasing downward (1 2 Mi(
1
2
), 0 2 Mi(1), but 0 =2 Mi(

1
2
)). However, Mi is

increasing upward since 1 2Mi(e#i) for every e#i 2 [0; 1]. One can also verify that
each ui satisÖes the upward transfer single crossing property in (ei; e#i), but not the
upward single crossing property (ui(12 ;

1
4
) ( ui(0; 14) =

1
4
, but ui(12 ; 1) ( ui(0; 1) =

(1
2
). Since, in ei, each ui is transfer weakly upper semicontinuous and upward

upper semicontinuous, it follows from Theorem 1 that the game has a pure strategy
Nash equilibrium.

Example 5 Consider the following war of attrition game G. Two players
compete for an object over the time interval [0; c]. The playersí valuations of the
object are equal to v1 and v2, where 0 < v2 * v1 < c. Player iís set of strategies Ti
is the set of possible concession times, [0; c]. Player iís payo§ function is as follows:

ui(ti; t#i) =

8
<

:

(ti if ti < t#i;
1
2
vi ( ti if ti = t#i;
vi ( t#i if ti > t#i.

13



Player iís best-reply correspondence Mi : T#i ! Ti is given by:

Mi(e#i) =

8
<

:

(t#i; c] if t#i < vi
f0g [ (t#i; c] if t#i = vi
f0g if t#i > vi:

Clearly, each Mi is neither increasing upward nor increasing downward.
Consider the game G# where the payo§ functions are the same as those in G,

but the order on player 2ís strategy set is reversed. Thus, in G#, t001 21 t01 if and
only if t001 1 t01 for every t01, t001 2 [0; c], and t002 22 t02 if and only if t002 * t02 for every
t02, t

00
2 2 [0; c].
It is not di¢cult to see that, in G#, u1 is upward upper semicontinuous in t1

and satisÖes the upward single-crossing property in (t1; t2). To check the latter,
pick some t002 < t02 and t

0
1 < t001 such that u1(t

00
1; t

0
2) ( u1(t01; t02) 1 0. It is worth

noticing that the last inequality implies that t001 1 t02. We need to show that
u1(t

00
1; t

00
2)( u1(t01; t002) 1 0. If t002 * t01, then u1(t001; t002)( u1(t01; t002) 1 (v1 ( t002)( (v1 (

t002) = 0. If t01 < t002, then u1(t
0
1; t

0
2) = u1(t

0
1; t

00
2) = (t01 and, since t001 1 t02 > t002,

u1(t
00
1; t

00
2) > u1(t

00
1; t

0
2). Consequently, u1(t

00
1; t

00
2)( u1(t01; t002) > u1(t001; t02)( u1(t01; t02).

Similarly, u2 is downward upper semicontinuous in t2 and satisÖes the down-
ward single-crossing property in (t2; t1). Therefore, in G#, player 1ís best-reply
correspondence is Veinott-increasing upward and player 2ís best-reply correspon-
dence is Veinott-increasing downward. Thus, the existence of a Nash equilibrium
in the game G# follows from Theorem 1.

In the next example, we use Theorem 2 to show that a nonquasiconcave
Bertrand duopoly model with a nonlinear aggregate demand curve has a pure
strategy Nash equilibrium. It is useful to notice that Renyís equilibrium existence
theorem also implies that the game has a mixed strategy Nash equilibrium.5

Example 6 Consider the following Bertrand duopoly model with homo-
geneous products. There are two identical Örms with the total cost functions
Ci(qi) = qi, i = 1; 2. The demand function D : [0;+1)! [0;+1) is as follows:

D(p) =

8
<

:

20( 3p if p 2 [0; 4];
10( 1

2
p if p 2 [4; 20];

0 if p 2 (20;+1):

Its graph is not a straight line, but has a conventional convex shape.

5See, e.g., Monteiro and Page (2007), Allison and Lepore (2014), Prokopovych and Yannelis
(2014).
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Then, Örm iís proÖt function ui : [0;+1)/ [0;+1)! R is given by

ui(pi; p#i) =

8
<

:

(pi ( 1)D(pi) if pi < p#i;
1
2
(pi ( 1)D(pi) if pi = p#i;
0 if pi > p#i:

There is no loss of generality in assuming that each player iís strategy set is
Xi = [1; 20] because, for each player i, every strategy from the set [0; 1)[(20;+1)
is weakly dominated by, for example, pi = 2. Consequently, if the game has a
pure strategy Nash equilibrium in [1; 20]/ [1; 20], then the strategy proÖle is also
a Nash equilibrium of the entire game.
It is useful to notice that the maximizer of the function f1 : [1; 4] ! R de-

Öned by f1(p) = (p ( 1)(20 ( 3p) is p1 = 23
6
and the maximizer of the function

f2 : [4; 20] ! R deÖned by f2(p) = (p ( 1)(10 ( 1
2
p) is p2 = 10:5. Also notice

that f1(p) = f2(p) at p = 4. Since, for example, the set of player 1ís proÖtable
deviations from the strategy proÖle (p1; p2) = (4; 11) contains both 23

6
and 10:5,

the game is not quasiconcave. The payo§ functions are not transfer weakly upper
continuous in own strategies. Consequently, some values of the best-reply cor-
respondences are empty. Verifying whether the "-best-reply correspondences are
increasing downward is reduced, in virtue of Lemma 7, to verifying whether each
player iís payo§ function satisÖes the approximate upward transfer single-crossing
property in (pi; p#i). We now show this for player 1ís payo§ function.
Fix some " > 0. Consider some p01 and p

00
1 in [1; 20] with p

0
1 < p

00
1 and some p

0
2

and p002 in [1; 20] with p
0
2 < p002 such that u1(p

00
1; p

0
2) ( u1(p01; p02) > ". We want to

show that u1(p001; p
00
2)( u1(p01; p002) > ".

Notice that p02 can not be less than p
00
1; otherwise, the di§erence u1(p

00
1; p

0
2) (

u1(p
0
1; p

0
2) would be nonpositive. Then p002 > p02 1 p001 > p01, and, therefore,

u1(p
0
1; p

0
2) = u1(p

0
1; p

00
2) and u1(p

00
1; p

0
2) * u1(p001; p002). Thus, u1(p001; p002) ( u1(p01; p002) 1

u1(p
00
1; p

0
2)( u1(p01; p02) > ".

It is not di¢cult to see that each payo§ function is downward upper semi-
continuous in own strategy. Since the game is better-reply secure, it has a pure
strategy Nash equilibrium by Theorem 2.
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5 Conclusions

Lattice-theoretic tools can be used to study equilibrium existence in strategic
games with totally ordered strategy sets where the payo§ functions are not upper
semicontinuous in own strategies and do not satisfy the single-crossing property.
If the payo§ functions are transfer weakly upper continuous in own strategies, the
existence of a Nash equilibrium follows from directional upper semicontinuity and
directional transfer single crossing. In games where best-reply correspondences are
not necessarily nonempty-valued everywhere, strategic complementarities might
reveal themselves in the "-best-reply correspondences. If so, directional approx-
imate transfer single crossing is employed, along with better-reply security and
directional upper semicontinuity. The major results of this paper are illustrated
with the aid of a number of economics-related examples to which the seminal con-
tributions by Vives (1990), Milgrom and Shannon (1994), and Reny (1999) are not
applicable.

Appendix

The Appendix contains proofs of some auxiliary lemmas.

Proof of Lemma 1

Assume Örst that f is order upper semicontinuous and a net fp!g converges to bp in
P . We need to show that lim sup! f(p!) * f(bp). By passing to a subnet if neces-
sary, we may assume, without loss of generality, that lim sup! f(p!) = lim! f(p!).
Since fp!g is totally ordered, it has a monotone (increasing or decreasing) subnet,
again denoted by fp!g, converging to bp (see, e.g., Roman, 2008, p. 17). It follows
from the order upper semicontinuity of f that f(bp) 1 lim! f(p!).
Conversely, let f be upper semicontinuous, and let fp!g be, for example, an

increasing net of elements of P . Since P is compact, fp!g converges to bp =
_

!

p!.

Then lim sup! f(p!) * f(
_

!

p!) by the upper semicontinuity of f . A similar

reasoning can be provided for a decreasing net.

Proof of Lemma 8

Consider, for example, the case when f is downward upper semicontinuous on P
for every t 2 T . Fix some t 2 T . We need to show that there exists bp 2M "(t) such
that bp ! p for every p 2M "(t). Since P is compact, the closure ofM "(t), clM "(t),
is also compact. Since clM "(t) is also a chain, it has a least element bp 2 clM "(t)
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such that bp ! p for every p 2 clM "(t). Then bp is the limit of a net fp!g in
M "(t). Since P is totally ordered, fp!g has a decreasing subnet that converges to
bp. Denote it again fp!g. Since f(3; t) : P ! R is downward upper semicontinuous
and bp =

^

!

p!, lim sup! f(p!; t) * f(bp; t). Therefore, bp 2 M "(t); that is, bp is not

only the least element of clM "(t), but is also the least element of M "(t).
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